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Abstract

In our prior work, we presented a highly effective lo-
cal search based heuristic algorithm called the Largest
Expanding Sweep Search (LESS) to solve the minimum
energy broadcast (MEB) problem over wireless ad hoc
or sensor networks. In this paper, the performance is
further strengthened by using iterated local optimiza-
tion (ILO) techniques at the cost of additional compu-
tational complexity. To the best of our knowledge, this
implementation constitutes currently the best perform-
ing algorithm among the known heuristics for MEB. We
support this claim through extensive simulation study,
comparing with globally optimal solutions obtained by
an integer programming (IP) solver. For small net-
work size up to 20 nodes, which is imposed by practi-
cal limitation of the IP solver, the ILO based algorithm
produces globally optimal solutions with very high fre-
quency (> 70%), and average performance is within
1.12% of the optimal solution.

1. Introduction

Since wireless ad hoc and sensor networks oper-
ate over a battery energy limited environment, the de-
sign of energy-efficient network algorithms has been an
active research topic. Especially, the MINIMUM EN-
ERGY BROADCAST, first proposed and investigated by
Wieselthier et al. [26, 27], and its variant MINIMUM

RANGE ASSIGNMENT [4, 5] have recently attracted
significant attention from research community, since
broadcast is a major communication mode for informa-
tion dissemination. Both the general graph and geomet-
ric graph version of this problem have been proven to be
NP-complete [3, 18]. Therefore, unless P = NP , it is
not likely there exist exact polynomial time algorithms
to solve this problem.
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ONR award #: N00014-04-1-0479 and Collaborative Technology Al-
liance (CTA) from ARL under DAAD19-01-2-0011. All statments
and opinions are that of the authors and do not represent any position
of the U.S government.

As an exact method to obtain globally optimal so-
lutions, a mixed integer programming (IP) formulation
for MINIMUM ENERGY BROADCAST has been pre-
sented by Das, et al. [7]. Albeit valuable for theo-
retical reasons, its practical usage is limited to only
small input sizes, as is the usual case for many IP prob-
lems. To deal with practical input size we still need
to rely on efficient heuristic approximate algorithms,
which usually produce satisfactory results in polyno-
mial time bound but without the guarantee of global
optimality. Over the past years, several (greedy) con-
struction heuristics have been developed such that a
feasible solution is built from scratch, say, using lo-
cations of nodes as input. Some of the representative
algorithms in this category are: the Broadcast Incre-
mental Power (BIP) [26], Embedded Wireless Multi-
cast Advantage (EWMA) [3], Broadcast Average In-
cremental Power (BAIP) [24], Greedy Perimeter Broad-
cast Efficiency (GPBE) [13], Center Oriented Broadcast
Routing Algorithm (COBRA) [16], Steiner tree based
heuristics by Liang [18], Ant Colony System (ACS)
based approach [6], and G-Remit [25], etc.

In the general field of combinatorial optimization,
the iterative improvement heuristics have been another
class of approximate algorithms, where an initial feasi-
ble solution, possibly obtained from a construction al-
gorithm or generated randomly, is iteratively improved.
Local search and other meta-heuristics (e.g., simulated
annealing and tabu search) belong to the class of iter-
ative improvement heuristics. Many variants of local
search are known to be state-of-the-art heuristics for a
variety of combinatorial optimization problems; for in-
stance, for TRAVELING SALESMAN PROBLEM (TSP),
while there exist many tour construction algorithms
(e.g., Christofides’ heuristics, see [11] for a survey), the
well-known basic k-exchange and Lin–Kernighan (LK)
local search heuristics [19, 20], developed over three
decades ago, still remain to be the algorithms of choice
in terms of efficiency and effectiveness.

On the other hand, we observe however, much less
attention has been given in this direction for MINIMUM

ENERGY BROADCAST. In fact, there are a few known
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algorithms that may be considered as local search al-
gorithms in a broader sense, including Post Sweep pro-
cedure [26], Iterative Maximum Branch Minimization
(IMBM) [17], r-Shrink [6], although not specifically
stated as such. Interpreting these algorithms as local
search facilitates analysis of advantages or disadvan-
tages therein, and after the underlying concepts of each
algorithm are distilled as local search, we can easily ex-
tend the concepts to devise better performing heuris-
tics. Performance-wise, above heuristics (IMBM, r-
Shrink, Post-Sweep) are not impressive, resulting in lo-
cal optima only comparable to tree construction heuris-
tics (e.g., EWMA) in their solution quality.

In our prior work [15], we presented a highly effec-
tive heuristic algorithm (comparable to the LK search
for TSP [20]) called the Largest Expanding Sweep
Search (LESS), based on local search principle. In this
paper, we extend this concept and present an iterated lo-
cal optimization based heuristics relying on two neigh-
borhood structures, which are designed to be more gen-
eral and to maximize the correlation with the objective
function (the meaning of which will be clarified later),
still maintaining computational efficiency. One short-
coming of these approaches is that they are centralized.
Unless the broadcast routing tree is computed at one lo-
cation and distributed to all other nodes, their practical
usage as a broadcast routing protocol may be limited.
However, we believe the quest to develop ever better
performing algorithms has never ended (as is the case
for TSP problem). Eventually, the insights gained dur-
ing the course of our investigation as to which mecha-
nism provides trees yielding smaller cost may be bene-
ficial in other related research activities, including dis-
tributed and localized implementations.

The remainder of this paper is organized as follows.
In the next section, a system model used throughout this
paper and the problem formulation will be presented. In
Section 3, we briefly review the concept of iterated local
optimization. In Section 4, we discuss two neighbor-
hood structures suitable for MEB problem, which are
one of the most crucial ingredients in iterated local op-
timization. Subsequently, the details of search strate-
gies and the choice of initial feasible solution are dis-
cussed in Section 5. Simulation results and conclusions
are provided in Section 6 and 7.

2. System Model and Problem Formulation

We assume that each node (host) in a wireless ad hoc
network is equipped with an omnidirectional antenna,
and acquires its location information either through
GPS or other localization techniques [2]. Let ‖uv‖ be
the Euclidean distance between node u and v. The re-

quired power to support a link (u, v) from node u to v
is denoted by Puv , which consists of RF transmit power
and signal processing power for signal transmission and
reception. Due to path loss in a wireless channel, the re-
ceived power level is inversely proportional to distance
and attenuates as ‖uv‖−α, where α denotes the path
loss factor which usually satisfies 2 ≤ α ≤ 7. There-
fore, Puv = γ ‖uv‖α + λ is a relatively accurate link
model assuming stationary nodes and a time-invariant
(or slowly varying) channel, where γ denotes the re-
ceiver sensitivity threshold and λ is a constant power
consumption factor due to signal processing at a node.
To avoid undue complication of notations, we tenta-
tively assume γ = 1 and λ = 0. We note that our al-
gorithm works independent of an individual link model.
The power consumption at node u is denoted by p (u),
and its corresponding transmission range is r (u), which
are bounded by p (u) ≤ pmax and r (u) ≤ rmax, respec-
tively. Therefore, the required transmit power of node
u to reach node v is p (u) = Puv .

Given a network represented by a directed weighted
graph G = (V, A, c) with a set V = {1, 2, . . . , n} of
nodes with cardinality n = |V | and a set A of m = |A|
directed edges (links), and a real valued cost function c :
A→ R

1 defined on every edges e ∈ A, the MINIMUM

ENERGY BROADCAST (MEB) problem seeks to find
a s-arborescence (served as a broadcast routing tree)
T = (V, AT ) rooted at source node s that can reach
every node v ∈ V in a wireless network either directly
or through intermediate nodes (in multiple hops) with
minimum overall power cost. Then the general graph
version can be formulated as:

minimize
∑
u∈V

max
(u,v)∈AT

{cuv} , ∀T ∈ T ⊆ G, (1)

where T denotes the family of s-arborescences (di-
rected trees) rooted at s and spanning all nodes in V .
The geometric version of MEB assumes the graph be a
geometric graph; That is, a directed edge (u, v) ∈ V 2

exists if and only if ‖uv‖ ≤ r (u). Note (u, v) ∈ A does
not necessarily mean (v, u) ∈ A, since r (u) �= r (v) in
general.

In what follows, we will use the following notations:

• p (u) = total required power to enable communi-
cations between nodes lying at range r (u) apart
from u.

• Puv = total required power to maintain a commu-
nication link between node u and v.

• δT (u) � {v | (u, v) ∈ AT }, the logical neighbor
of node u in a given tree T which the set of ad-
jacent (child) nodes of node u. The cardinality of



δT (u) corresponds to the outdegree of node u in
the tree T , i.e., deg (u) = |δT (u)| . The indegree
of every node is always 1, except the source node
s for which the indegree is 0.

• πT (u) � {v | (v, u) ∈ AT } , ∀u ∈ V \{s} and
πT (s) = φ, the unique parent node of node
u in T . We also use the notation πT (S) �⋃

v∈S πT (v) , ∀S ⊆ V .

• Nu (v) � {w | 0 ≤ ‖uw‖ ≤ ‖uv‖ , w ∈ V } , the
physical neighbor of node u that is the set of all
nodes within the range r (u) = ‖uv‖.

• Πs→u = the set of nodes lying on a directed path
from the source s to node u, where s, u ∈ Πs→u.

3. Iterated Local Optimization (ILO)

In this section, a brief background on iterated lo-
cal optimization is presented. Excellent references on
basic local search can be found in [11, 22]. For more
recent developments in meta-heuristics, readers are re-
ferred to [8]. Given an optimization problem with in-
stances (F , c) whereF is the domain of feasible points;
c : F → R

1 is the cost function, a neighborhood is a
mapping N : F −→ 2F defined for every instance in
F . Then, a feasible solution x ∈ F is called locally
optimal with respect to N (or simply locally optimal
whenever N is understood by context), if c (x) ≤ c (y) ,
∀y ∈ N (x), and is called globally optimal, if c (x) ≤
c (y) , ∀y ∈ F . The ‘standard’ local search algorithm
for a minimization problem can be written as:

procedure Local Search(F , c, N)
s∗ ←− GenerateInitialFeasibleSolution
while ∃s ∈ N(s∗) such that c (s) < c (s∗)

s∗ ←− s
end
return s∗

Figure 1. Pseudo-code of a standard local
search procedure.

which shows that, after an initial feasible solution is
generated by a predefined feasible solution genera-
tor GenerateInitialFeasibleSolution, this solution is
iteratively refined until there is no further improve-
ment within the neighborhood. The output of this
procedure is a local optimum s∗, which is heav-
ily dependent on the neighborhood N and the ini-
tial feasible solution. In general, the larger the
neighborhood size, the better the quality of the lo-
cal optima, i.e., if s∗1 =LocalSearch(F , c, N1),

s∗2 =LocalSearch(F , c, N2), and N1 ⊇ N2, it is
highly likely that c (s∗1) ≤ c (s∗2), although it is not al-
ways guaranteed.

procedure Iterated Local Optimization(F , c, N1, N2)
s0 ←− GenerateInitialFeasibleSolution
s∗ ←− LocalSearch(F , c, N1)
repeat

s′ ←− Perturbation(s∗, N2)
s∗′ ←− LocalSearch(s′,F , c, N1)
s∗ ←− AcceptanceCriterion(s∗, s∗′)

until TerminationCondition satisfied
return s∗

Figure 2. Pseudo-code of an iterated local
optimization procedure.

Most local search algorithms rely on a single neigh-
borhood structure. As a way to improve upon local
search, there have also been efforts to combine multiple
neighborhoods for descent; e.g. Martin et al. [21] pro-
posed a simulated annealing based algorithm for TSP
with double-bridge 4-exhange neighborhood combined
with standard local search using 3-opt neighborhood.
Such a scheme is commonly called under the various
names of iterated local search [11], large-step Markov
chain [21], chained local search [1], multilevel local
search [23], and variable neighborhood search [8]. In
this paper, we refer to our approach under the more
general name of iterated local optimization. For in-
stance, for TSP, the chained LK (CLK) [1], Iterated LK
(ILK) [11], Lin–Kernighan–Helsgaun (LKH) [9], and
multilevel LKH [23] algorithms are based on the prin-
ciple of iterated local optimization, and constitute the
current state-of-the-art algorithms in terms of efficiency
and effectiveness.

A high level description of iterated local opti-
mization is presented in Fig. 2, which utilizes two
neighborhood structures N1 and N2. First, starting
from an initial feasible solution s0, after applying Lo-
calSearch(F , c, N1) using the neighborhood N1, we
arrive at a local optimum s∗. Next we apply perturba-
tion or ‘kick’ to s∗ using Perturbation(s∗, N2) by the
neighborhood N2 to escape the local optimum (by al-
lowing temporary hill climbing), whose outcome is an
intermediate stage s′. LocalSearch(F , c, N1) is once
again applied but now using s ′ as an initial feasible so-
lution, and accept or reject the output depending on the
AcceptanceCriterion. This step is repeated until a ter-
mination condition is satisfied. We will discuss individ-
ual component in the context of MINIMUM ENERGY

BROADCAST in Section 5.



4. Two Neighborhood Structures for Iter-
ated Local Optimization

The local optimization for MINIMUM ENERGY

BROADCAST (MEB) requires an arborescence as an
initial feasible solution and the intermediate improved
solution at each iteration. To preserve tree structure,
the basic premise is that every node should be con-
nected from the source, and there should be no cy-
cle. Given a tree T , we can uniquely and easily iden-
tify the corresponding range assignment vector r =
(r (1) , r (2) , . . . , r (n)) ∈ R ⊂ R

n in Θ (n) time,
where R is the domain of feasible solutions for MINI-
MUM RANGE ASSIGNMENT (MRA). But the converse
is not true, because a group of trees are mapped into the
same range assignment vector r. See Fig. 3 for example.
In effect, the domain of feasible solutions R for MRA
is a partition of the domain of the feasible solutions T
for MEB. Thus if we deal with range assignments r̄ in-
stead of trees T , the search space of local search [11,22]
for MEB problem may be significantly simplified.

Figure 3. Range assignment vs. tree.
(a) A tree and its range assignment. (b)
For the same range assignment, multi-
ple trees are allowable. For this specific
topology, 28 = 256 trees are mapped to
the same range assignment r(s) = ‖su‖,
r(u) = ‖uv‖. Unaffected edges are not
displayed.

In general, it is suggested that neighborhoods be de-
signed in order to induce maximum correlation between
objective function values of adjacent points [11]. In or-
der to maximize correlation between objective function
and neighborhood function, it is better to directly deal
with range assignments instead of trees. As observed by
Wieselthier et al. [26], this also matches well with the
general philosophy that node-based approach (range) is
preferred to link-based approach (tree) in wireless envi-
ronment. This observation is the basis of our new ap-
proach and leads to an algorithm that converges quickly
to a high quality local optimum. In the following, if at
most k ranges of nodes are allowed to increase from a

given range assignment r, we call it an order-k (range-
based) neighborhood and denote by NH (k) (r), i.e.,

NH(k) (r)
= {r′ | r′ (v) ≥ r (v) , ∀v ∈ S ⊂ V ∧ |S| ≤ k} .

4.1. Expanding Sweep Search Neighborhood

First we present an order-1 range-based neighbor-
hood structure called the Expanding Sweep Search
(ESS) neighborhoodwhich also preserves tree connec-
tivity from source s. The idea of ESS is simple: in
exchange for an increase in a node’s power (or equiv-
alently range), how much reduction in other nodes’
power can be achieved is tested. Before we proceed
further, we note that all operations in our algorithm are
based on the following trivial inequality: for any finite
sets of real numbers S1 and S2 such that S1 ⊆ S2,

max {S1} ≤ max {S2} . (2)

Thus it works on general graphs with arbitrary edge
costs, even in the case of asymmetric edge costs. How-
ever, if a geometric graph model is used, we can lever-
age its geometric properties to find more efficient algo-
rithms.

The ESS transformation may be best explained with
the illustrations presented in Fig. 4. Fig. 4(a) shows the
original tree T , where paths from source s to nodes c,
e, f are omitted. The direction of each edge is always
assumed away from s. The transmission range of each
node is also drawn. Let us keep focus on node u, which
originally has the range r (u) = ‖ud‖. Suppose now
node u decides to expand its range to reach a destination
node v such that ‖uv‖ > ‖ud‖, at the increase in total
cost by

∆+ (u) = Puv − Pud ≥ 0 (3)

which is called the incremental power. The expanded
range is illustrated as a solid line circle in Fig. 4(b).
Then every node within the range, i.e., the physical
neighborNu (v) = {a, b, d, g, h, i, j, u, v}, can hear the
broadcast message from s through node u. Thus, re-
gardless of previous parent node, each node in Nu (v)
may update its parent node to be node u, since they can
get the message from node u. However, cautions should
be given since if any of the path nodes from the source
to node u, denoted by Πs→u = {s, . . . , c, b, a, u},
would update its parent to node u, the path from s to
u would be broken and the tree might become discon-
nected. Therefore, only the nodes {d, g, h, i, j, v}, the
physical neighbors other than the nodes in Πs→u, are
allowed to become the children of node u. That is, ev-
ery node inMu (v) � Nu (v) \Πs→u (marked with an



Figure 4. Illustration for neighborhood structures (a) Original tree T . (b) Node u expands
its range to reach node v. (c) A neighbor tree T ′ of T in Expanding Sweep Search (ESS)
neighborhood.

empty circle in Fig. 4) updates its parent to node u. The
resulting transformed tree T ′ by this parent updates is
shown in Fig. 4(c).

Now let us analyze how much reduction in total
tree cost we can achieve by this transformation. Note
that updating parents of node inMu (v) in turn gives
a chance for the original parents w ∈ Qu (v) �
π(Mu (v))\ {u} = {b, d, e, f} marked with square in
Fig. 4 to reduce their ranges resulting in power reduc-
tion by

∆− (w) = p (w)− max
k∈δT (w)\Mu(v)

{Pwk} (4)

= max
k∈δT (w)

{Pwk} − max
k∈δT (w)\Mu(v)

{Pwk} ≥ 0,

since δT (w) \Mu (v) ⊆ δT (w) and using (2). Ac-
counting for every affected node w ∈ Qu (v), the pure
gain G (u, v) in total cost is

G (u, v) =
∑

w∈Qu(v)

∆− (w) −∆+ (u) , (5)

where the first term on the right hand side is called
sweeping gain. We denote the ESS transformation by
the postfix form T ′ = T || ESS (u, v). Then the ex-
panding sweep search neighborhooddenoted by NH ess

is defined as

NHess (T ) = {T ′ | T ′ = T || ESS (u, v) , ∀u, v ∈ V } .

Since |NHess (T )| ≤
(

n
2

)
, the size of neighborhood

is O
(
n2

)
. After the expanding sweep search neigh-

borhood NHess is clearly defined, the LESS algorithm
[15] is nothing more than LocalSearch(T , c, NHess)
with the steepest descent search strategy. That is, given
an initial feasible solution, the best neighbor among
NHess is chosen at each iteration, until there is no more
gain in cost.

procedure Expanding Sweep Search (ESS) (u, v)
Input: a s-arborescence T ∈ T
1. T ′ ← T
2. expand range of node u to v, i.e., r(u)← ‖uv‖,
∀v ∈ V s.t. ‖uv‖ ≥ r(u), v /∈ Πs→u

3.Mu (v)← Nu (v) \Πs→u

4. πT ′ (Mu (v))← u
5. return T ′

Figure 5. Pseudo-code for Expanding
Sweep Search (ESS) transformation.

4.2. Edge Exchange Neighborhood

An alternative (and traditional) approach is to con-
sider the tree structure itself instead of range assign-
ments. The most natural neighborhood structure con-
ceivable when the tree structure is a feasible solution is
the elementary tree transformation for undirected graph
as described in Papadimitriou and Steiglitz (see Chap-
ter 19 in [22]); that is, add a non-tree edge to a tree
and remove an edge from the unique cycle formed by
previous edge addition. Because we are dealing with a
rooted directed tree (arborescence) for MINIMUM EN-
ERGY BROADCAST, we can only apply elementary tree
transformation on the underlying graph of the directed
graph. Therefore we call it an Edge Exchange Neigh-
borhood (NHee) that is an adaptation of the elementary
tree transformation to directed graphs.

An equivalent interpretation of edge exchange neigh-
borhood is as follows: Remove an edge (u, v) from
T which partitions the tree into two subtrees T1 =
(Suv, AT1) and T2 = (V \Suv, AT2) where Suv denotes
the connected component containing s and u. Adding
an edge (u′, v′) ∈ Suv×V \Suv to T1∪T2 and updating



the direction of edges in T2 forms a neighbor of T :

NHee (T ) = {T ′ | T ′ = (V, AT \ (u, v) ∪ (u′, v′)) ,

∀ (u, v) ∈ AT , ∀ (u′, v′) ∈ Suv × V \Suv,

reverse edge direction Πv→v′}.

The size of neighborhood is n |Suv| (|V | − |Suv|) =
O

(
n3

)
. Checking the cost of a tree c (T ), using a

simple array as the data structure for a tree, requires
O (n) running time. Hence if we use the algorithm
LocalSearch(T , c, NHee) with steepest descent
strategy, each iteration may take O

(
n4

)
, which is

quite expensive. In the course of updating the direction
of edges in T2, it is possible that O (n) nodes may
be required to increase their ranges. Therefore, this
neighborhood is complementary to NHess. Other pos-
sible extension to NHee neighborhood is to combine
NHee and NHess: that is, for every expanded range
in NHee, we can apply the ESS transformation.
Although the combined neighborhood may give better
performance, running time per iteration is costly.
Trade-offs in neighborhood size, time complexity and
the quality of local optima is required. Therefore,
we restrict the usage of NHee as a perturbation
method for iterated local optimization. Since Lo-
calSearch(T , c, NHess) �=LocalSearch(T , c, NHee)
in general, they are hence mutually beneficial in en-
hancing the quality of local optimum obtained by the
other.

Theorem 1 The following properties of these two
neighborhoods satisfy:
(a) Expanding Sweep Search neighborhood encom-
passes neighborhood for Post Sweep algorithm.
(b) Edge Exchange neighborhood encompasses neigh-
borhoods for IMBM and 1-Shrink.

Proof. (a) Without range expansion in NHess, inspect-
ing gain for current range assignment is no different
from the post sweep algorithm [26]. (b) The neighbor-
hoods used in Iterative Maximum Branch Minimization
(IMBM) [17] and r-shrink algorithms [6] are obtained
by updating a node’s parent to a node which is not one
of its descendants. Clearly, this is a special case of
NHee when v = v′.

Therefore, every local optimum by NHess (or NHee)
is also a local optimum by Post Sweep (or IMBM and 1-
Shrink), respectively. Furthermore, note that although
T ′ in Fig. 4(c) is a one-hop neighbor of T in NHess,
the corresponding tree structure is large number of hops
away in terms of edge exchange neighborhood NH ee.
This is the true advantage of using range assignments

in our algorithms, because the number of required iter-
ation can be significantly reduced, compared to using
tree structure, without much added complexity.

5. Search Strategies and Algorithm Details

Our current implementation of iterated local opti-
mization in this work strictly follows the reference high
level description in Fig. 2. It is based on deterministic
local search LocalSearch(T , c, NHess), and a random
perturbation Perturbation(s∗, NHee). We will discuss
each component in Fig. 2 in the order of appearance.
Before we further proceed, let us discuss some of the
underlying philosophies of our algorithm.

The underlying philosophy of our current work is
exactly the opposite of the Iterative Maximum Branch
Minimization (IMBM) [17] and r-shrink [6] algo-
rithms. As suggested by the names of these algorithms,
“range reduction” is emphasized, meaning that the max-
imum branch (edge) and the corresponding range of
each node is progressively broken into smaller pieces
(i.e., into multihop edges or ranges). For instance in
IMBM, as an initial feasible solution, a single maxi-
mum range from the source s covering the rest of the
nodes, i.e., r (s) = maxv∈V {‖sv‖} and the corre-
sponding star topology rooted at s, is used. It is it-
eratively reduced and transformed to different multi-
hop tree structure [17]. The r-shrink algorithm resem-
bles the IMBM, but relies on a deterministic maximum
branch reduction method.

On the other hand, our LESS algorithm [15] progres-
sively expands the ranges of nodes. While range ex-
pansion and range reduction are like the flip side of the
coin (one can be achieved at the cost of the other), the
implication in local search is radically different. That
is, to reduce the range of a node, we need to specifi-
cally search for the nodes whose increase in range can
reduce the total cost. However, as observed in expand-
ing sweep search, expansion in a node’s range naturally
determines which nodes can reduce their ranges and
do not require further computations, which is one ad-
vantage of our approach. Furthermore, there are other
reasons range expansion may be generally preferable to
range reduction for MEB.

Let us consider the topology illustrated in Fig. 6,
where two groups of m nodes lie at the inner and outer
circle of radius r1 and r2, respectively, where |r2 − r1|
is assumed very small. Suppose the configuration in
Fig. 6(a) is given as the initial feasible solution, as is the
case for IMBM. While the net difference between two
tree cost may be small (rα

2 vs. rα
1 + m (r2 − r1)

α), ei-
ther deterministically or probabilistically searching for
the occasions which enable reduction in range r (s) is



Figure 6. Illustration of a stable constella-
tion demonstrating that reduction in range
is difficult in general.

extremely difficult. That is, only if all m interior nodes
simultaneously increase their ranges, we can jump out
of the local optimum to convert to the better configu-
ration in Fig. 6(b). In terms of the number of hops
in neighborhood, these two solutions are far apart and
hence we may assume there exists a high potential bar-
rier in between these configurations. In the course of
range reduction, similar situation occurs very frequently
and hence it is easy to fall into a poor local optimum.

GenerateInitialFeasibleSolution: Now it becomes
quite clear which initial feasible solution is a suitable
choice. Note that the stable configuration discussed
above may have been avoided from the outset (although
not completely), if we have chosen MST as the initial
solution. In addition, since MST consists of short length
edges [12], it provides richer search space for range ex-
pansion algorithms as ours. Also approximation ratio of
MST is known to be 12 [24]. By improving upon MST,
the same worst case bound is guaranteed. For the same
reason, both BIP and SPT are equally viable choices
but not considered in this paper. Certainly, repeatedly
restarting from a randomly generated tree as a starting
point can only make our results stronger.

LocalSearch: As the LocalSearch algorithm in
Fig. 2, we could use our LESS algorithm [15]. How-
ever, we can speed up convergence significantly by se-
lecting the first k largest gain at each iteration as long as
the ranges are disjoint, for which we call the variable-
order disjoint (VOD) steepest descent search strategy.
This strategy in some sense resembles the variable-
depth search by Lin and Kernighan [20] in that indef-
inite orders are considered as long as the gain is kept
positive. We will call this algorithm as LESSvod. The
details are listed in Fig. 7.

Perturbation: As discussed in Section 4.2, we adopt
edge exchange neighborhoodNHee as our perturbation

procedure Variable-Order Disjoint LESS (LESSvod)
Input: an s-arborescence t
/* requires searching whole neighborhood */
1. µ(u)← argmax

{v:‖uv‖≥r(u),v/∈Πs→u}
{G(u, v)}, ∀u ∈ V

2. sort u1, u2, . . . , uk, k ≤ n so that

G (ui, µ (ui)) ≥ G (uj, µ (uj)) > 0,

∀1 ≤ i < j ≤ k

5. R←− {u1}
6. for i = 2, ..., k
/* if ranges are disjoint */
7. if ‖uiv‖ ≥ ‖uiµ (ui)‖+ ‖vµ (v)‖, ∀v ∈ R
8. R←− R ∪ {ui}
9. end
/* iteratively apply ESS |R| times */
10. t′ ←− t ‖ ESS (v, µ (v)), ∀v ∈ R
11. if c (t′) < c(t)
/* if there is gain, repeat iteration */
12. t←− t′; goto step 1
13. return t′

Figure 7. Pseudo-code for LESSvod algo-
rithm.

method. Due to its O
(
n3

)
size neighborhood, steep-

est descent type search strategy can be very expensive.
Therefore, random perturbation in NHee is used in this
paper, which requires only O (1) running time. This al-
lows most of the time in iterated local optimization will
be spent by LocalSearch algorithms.

AcceptanceCriterion: As in simulated annealing or
large-step Markov chain [21], the following acceptance
criterion is popularly used:

AcceptanceCriterion (s∗, s∗′)

=




s∗′ if c (s∗′) < c (s∗)

s∗′ if c (s∗′) > c (s∗) , w.p. e
c(s∗)−c(s∗′)

T

s∗ otherwise

where deteriorating perturbed intermediate solution s ∗′

is accepted with probability (w. p.) exp{ c(s∗)−c(s∗′)
T },

and T is a tunable parameter called temperature. If
T = 0, only the better solution is accepted. If T is very
high, random walk type behavior can be accomplished.
In this paper, we adopt this acceptance criterion with
T = 0. Simulations using T > 0 and changing temper-
ature over time (cooling schedule) will be a direct but
interesting extension to current work.

TerminationCondition: We can terminate the it-



eration: (i) if s∗ has reached the global optimum,
(ii) if maximum pre-specified number of iteration has
reached, or (iii) if pre-specified time has elapsed. In
case the globally optimal solution is known (say, using
an IP solver), we use (i); otherwise, we use (iii) with
maximum time limit set to 60 seconds using a Pentium
1.6GHz equipped machine. Now that all components in
iterated local optimization is established, we proceed to
simulations results.

6. Simulation Results

Over 1000×1000 m2 deploy region, network con-
figurations are generated by uniformly distributing n
nodes, one of the node is selected as the source s, and
broadcast routing trees rooted at s are constructed. By
varying the number of nodes within the deploy region,
we have effectively changed the node density per unit
area. The path loss factors α = 2 and 4 are used in our
simulations. For each network instance, globally opti-
mal solutions are obtained following the IP formulation
in [7]. As an IP solver, CPLEX [10], one of the most so-
phisticated commercial IP solver, was used. From our
experience, a network size of up to 20 nodes is the prac-
tical maximum limit solvable in a reasonable time (< 3
hours per instance). However, CPLEX being a general
purpose IP solver, it does not rule out the possibility
that one may develop customized solver by generating
problem-specific cuts for branch-and-cut methods [22]
either to speed up the calculation or to allow for larger
network sizes.

For small network sizes 4 ≤ n ≤ 20, we are able to
compare our results with optimal solutions by CPLEX,
and they are summarized in Table 1 and 2. The expres-
sions to obtain the values in each column is summarized
underneath the tables. Each entry in the tables is an av-
erage of 1000 randomly generated network instances.
We note that obtaining the whole globally optimal solu-
tions took several weeks using a Pentium 2.8GHz pro-
cessor equipped machine, which demonstrates imprac-
ticableness of the IP approach in real situations. All
other algorithms are implemented in MATLAB environ-
ment. We allowed up to 60 seconds for the iterated local
optimization (ILO) using NHess +NHee to run before
interrupted. As the performance comparison measure,
we presented both the average total transmit power and
the average percentage excess (P.E.) over global op-
tima defined as

P.E. =
1
k

∑k

j=1
[cj(Talgo)/cj(TOPT)− 1]× 100%,

for the algorithm algo. Let popt denote the proba-
bility (frequency) of local optima by ILO being actu-

ally global optima (OPT). The values in second paren-
thesis in column (c) roughly represents (1− popt) =
Pr [c(TILO) > c(TOPT)] in percentage.

We can observe that ILO consistently produces very
high quality local optima, among which globally op-
timal solutions are obtained with high frequency. As
noted earlier, NHee is complementary to NHess, and
hence using NHee converts a large fraction of subopti-
mal cases into global optima. For instance, for α = 2,
n ≤ 20, we get P.E. ≤ 1.117% and (1 − popt) ≤
30.8%. In case of α = 4, we can get global op-
tima for almost all instances, with popt ≥ 96.5% and
P.E. ≤ 0.039% for n ≤ 20. Out of interest we also
tested local search using NHee alone, and its results
are reported in column (d). We can see that the result is
not impressive enough, although still better than IMBM
or 1-Shrink. However, we should note that this level of
performance is achieved without random restarts as in
IMBM. The reason we get better performance for α = 4
is quite clear. As observed in [3, 14, 26], the larger the
path loss factor α, the larger the penalty for increasing
the transmit power. As the wireless broadcast advantage
becomes negligible, more link-based characteristics is
emphasized. In such case even local search using NHee

alone performs reasonably well with P.E. ≤ 1.887%,
since NHee is a link-based neighborhood. Readers may
also find interest in the performance of BIP or MST rel-
ative to the global optimum.

For a larger network size n > 20, comparison
with optimal solutions by the IP solver was not possi-
ble. Hence as a reference, performance comparison of
LESS, MST, BIP [26], and EWMA [3] are presented
in Fig. 8. Extrapolating the performance level of LESS
demonstrated in Table 1 and 2 to larger network sizes,
Fig. 8 provides a valuable measure how other algo-
rithms perform relative to the optimal. Average total
transmit power is compared in Fig. 8(a) and (c), and
the ratio of them is compared in Fig. 8(b) and (d) for
α = 2 and 4. In all figures, it is easy to notice that
LESS consistently outperforms others by a wide mar-
gin, even EWMA, which used to be state-of-the-art.
For instance, LESS performs approximately 25∼31%
(7.5∼8.5%) better than MST, over the entire range from
n = 20 to 1000 for α = 2 (resp. α = 4). For α = 4,
due to high dynamic range, it is hard to appreciate the
performance gain in Fig. 8(c) but it is clearly visible in
Fig. 8(d). Clearly, this suggest we should densely de-
ploy network nodes, which has more favorable effect
than efficient algorithms for large α. For many practi-
cal situations when a high quality local optimum usually
suffices, our work can be used for benchmarking other
algorithms for comparison.



Table 1. Comparison of local search using NHess and NHee with global optima (α = 2)
(a) n (b) OPT (P.E.) (c) ILO (P.E.) (1 − popt) (d) NHee (P.E.) (e) BIP (P.E.) (f) MST (P.E.)

4 4.3143e+5 4.3143e+5 (0.0000%) ( 0.0%) 4.3455e+5 (0.7232%) 4.4192e+5 ( 2.5994%) 4.7631e+5 (10.4685%)
5 4.3102e+5 4.3102e+5 (0.0000%) ( 0.0%) 4.3787e+5 (1.5893%) 4.5459e+5 ( 5.9326%) 4.9352e+5 (15.5838%)
6 4.2652e+5 4.2655e+5 (0.0059%) ( 0.2%) 4.3691e+5 (2.4360%) 4.5998e+5 ( 8.1004%) 5.0399e+5 (18.8144%)
7 4.2720e+5 4.2734e+5 (0.0297%) ( 0.7%) 4.4146e+5 (3.3380%) 4.7062e+5 (10.5279%) 5.1693e+5 (22.3715%)
8 4.2408e+5 4.2444e+5 (0.0854%) ( 2.0%) 4.4421e+5 (4.7467%) 4.7761e+5 (13.3438%) 5.2574e+5 (25.2631%)
9 4.1824e+5 4.1850e+5 (0.0562%) ( 2.0%) 4.4001e+5 (5.2051%) 4.7966e+5 (15.8574%) 5.2605e+5 (27.6818%)
10 4.1977e+5 4.2045e+5 (0.1762%) ( 3.9%) 4.4510e+5 (6.0343%) 4.8863e+5 (17.2536%) 5.3655e+5 (29.3122%)
11 4.1404e+5 4.1513e+5 (0.2542%) ( 6.1%) 4.4061e+5 (6.4173%) 4.8709e+5 (18.2900%) 5.3244e+5 (29.6363%)
12 4.1079e+5 4.1195e+5 (0.2723%) ( 6.8%) 4.4078e+5 (7.3006%) 4.8602e+5 (19.1320%) 5.3351e+5 (31.2965%)
13 4.0735e+5 4.0853e+5 (0.2748%) ( 7.3%) 4.4168e+5 (8.4276%) 4.8940e+5 (20.8748%) 5.3479e+5 (32.5564%)
14 4.0776e+5 4.1012e+5 (0.5679%) (13.8%) 4.4337e+5 (8.7331%) 4.9478e+5 (22.1620%) 5.3809e+5 (33.2930%)
15 4.0603e+5 4.0853e+5 (0.6181%) (15.5%) 4.4256e+5 (8.9969%) 4.8921e+5 (21.1684%) 5.3572e+5 (33.1597%)
20 3.9952e+5 4.0390e+5 (1.1170%) (30.8%) 4.4340e+5 (10.9832%) 4.9831e+5 (25.4930%) 5.3865e+5 (36.0863%)

Table 2. Comparison of local search using NHess and NHee with global optima (α = 4)
(a) n (b) OPT (P.E.) (c) ILO (P.E.) (1 − popt) (d) NHee (P.E.) (e) BIP (P.E.) (f) MST (P.E.)

5 1.3383e+11 1.3383e+11 (0.0000%) (0.0%) 1.3448e+11 (0.4205%) 1.3686e+11 (2.8603%) 1.4025e+11 (5.3330%)
6 1.1127e+11 1.1127e+11 (0.0000%) (0.0%) 1.1187e+11 (0.5850%) 1.1504e+11 (3.5228%) 1.1854e+11 (6.4568%)
7 1.0075e+11 1.0074e+11 (0.0009%) (0.1%) 1.0176e+11 (0.8120%) 1.0476e+11 (4.2778%) 1.0713e+11 (7.0146%)
8 0.8822e+11 0.8825e+11 (0.0397%) (0.2%) 0.8932e+11 (1.1653%) 0.9249e+11 (4.9752%) 0.9527e+11 (8.3369%)
9 0.7811e+11 0.7813e+11 (0.0207%) (0.4%) 0.7895e+11 (0.9693%) 0.8223e+11 (5.8491%) 0.8418e+11 (8.7395%)
10 0.7295e+11 0.7297e+11 (0.0412%) (0.8%) 0.7367e+11 (1.0714%) 0.7713e+11 (6.0221%) 0.7916e+11 (9.1413%)
11 0.6441e+11 0.6444e+11 (0.0438%) (0.9%) 0.6522e+11 (1.2194%) 0.6837e+11 (6.2592%) 0.7015e+11 (9.0619%)
12 0.5806e+11 0.5808e+11 (0.0384%) (0.6%) 0.5891e+11 (1.3915%) 0.6174e+11 (6.3946%) 0.6336e+11 (9.3804%)
13 0.5431e+11 0.5432e+11 (0.0418%) (1.5%) 0.5534e+11 (1.7298%) 0.5796e+11 (6.8126%) 0.5912e+11 (9.1565%)
14 0.4971e+11 0.4972e+11 (0.0468%) (1.4%) 0.5045e+11 (1.4731%) 0.5318e+11 (7.2157%) 0.5434e+11 (9.9587%)
15 0.4571e+11 0.4573e+11 (0.0645%) (2.1%) 0.4647e+11 (1.7533%) 0.4875e+11 (6.8394%) 0.4987e+11 (9.5634%)
20 0.3303e+11 0.3305e+11 (0.0391%) (3.5%) 0.3365e+11 (1.8868%) 0.3529e+11 (7.2012%) 0.3663e+11 (11.2691%)

(a) n = network size (b) 1
k

∑k
j=1 cj(TOPT) (c) 1

k

∑k
j=1 cj(TNHess+NHee) (d) 1

k

∑k
j=1 cj(TNHee) (e)

1
k

∑k
j=1 cj(TBIP ) (f) 1

k

∑k
j=1 cj(TMST )

7. Conclusions

We investigated efficient heuristics for the minimum
energy broadcast (MEB) problem. While there have
been much efforts in developing efficient tree construc-
tion algorithms beginning from the BIP algorithm, we
provided different algorithms based on an iterative im-
provement approach. Specifically, through the use of it-
erated local optimization techniques, it is demonstrated
that the performance of our former algorithm, Largest
Expanding Sweep Search (LESS), can be further en-
hanced. Extensive comparison study with globally op-
timal solutions obtained by an integer programming
solver confirmed that the produced solutions are very
close to global optima in most cases, and the aver-
age percentage excess over the optimum is limited to
merely within 1.12 percents up to the network size of
20 nodes. Moreover, unlike the exact method by inte-
ger programming approach, our algorithms can handle
very large network sizes and hence can serve as the ba-
sis for benchmarking other developed algorithms. We
believe the gained insights from this work may spur the

development of better performing localized algorithms.
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